Integral representation of continuous functions
نویسندگان
چکیده
منابع مشابه
INTEGRAL REPRESENTATION OF CONTINUOUS FUNCTIONS(x)
It was shown by F. Riesz [5; 350](2) that every subharmonic function u can be represented as the sum of the potential of its mass distribution plus a harmonic function; the potential appears in the form of a Stieltjes integral (Riesz's theorem is stated in (2.2.1)). We prove that the Stieltjes integral may be replaced by a Lebesgue integral if u is continuous, and if the lower generalized Lapla...
متن کاملIntegral Representation of Whittaker Functions
Here W is in the Whittaker model W(π, ψ) of a unitary generic representation π of GL(n, F) and W ′ in W(π ′, ψ) where π ′ is a unitary generic representation of GL(n − 1, F) (see below for unexplained notations). One of the difficulties of the theory is that the representations π and π ′ need not be tempered. Thus one is led to consider holomorphic fiber bundles of representations (πu) and (π ′...
متن کاملIntegral Representation of Continuous Comonotonically Additive Functionals
In this paper, I first prove an integral representation theorem: Every quasi-integral on a Stone lattice can be represented by a unique uppercontinuous capacity. I then apply this representation theorem to study the topological structure of the space of all upper-continuous capacities on a compact space, and to prove the existence of an upper-continuous capacity on the product space of infinite...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولA minimal representation for continuous functions
This paper presents a variation of a celebrated result of Kawamura and Cook specifying the least set of information about a continuous function on the unit interval which is needed for fast function evaluation. To make the above description precise, one has to specify what is considered a ‘set of information’ about a function and what ‘fast’ means. Kawamura and Cook use secondorder complexity t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1950
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1950-0034916-8